Ascoli-type theorems and ideal (α)-convergence
نویسندگان
چکیده
منابع مشابه
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملFibonacci statistical convergence and Korovkin type approximation theorems
The purpose of this paper is twofold. First, the definition of new statistical convergence with Fibonacci sequence is given and some fundamental properties of statistical convergence are examined. Second, we provide various approximation results concerning the classical Korovkin theorem via Fibonacci type statistical convergence.
متن کاملRough Ideal Convergence
In this paper we extend the notion of rough convergence using the concept of ideals which automatically extends the earlier notions of rough convergence and rough statistical convergence. We define the set of rough ideal limit points and prove several results associated with this set.
متن کاملKhintchine-type Theorems on Manifolds: the Convergence Case for Standard
Notation. The main objects of this paper are n-tuples y = (y1, . . . , yn) of real numbers viewed as linear forms, i.e. as row vectors. In what follows, y will always mean a row vector, and we will be interested in values of a linear form given by y at integer points q = (q1, . . . , qn) T , the latter being a column vector. Thus yq will stand for y1q1 + · · ·+ ynqn. Hopefully it will cause no ...
متن کاملStrong Convergence Theorems for Solutions of Equations of Hammerstein Type
Let H be a real Hilbert space. A mapping A : D(A) ⊆ H → H is said to be monotone if ⟨Ax − Ay, x − y⟩ ≥ 0 for every x, y ∈ D(A). A is called maximal monotone if it is monotone and the R(I + rA) = H, the range of (I + rA), for each r > 0, where I is the identity mapping on H. A is said to satisfy the range condition if cl(D(A)) ⊆ R(I + rA) for each r > 0. For monotone mappings, there are many rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2012
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1202397a