Ascoli-type theorems and ideal (α)-convergence

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

Fibonacci statistical convergence and Korovkin type approximation theorems

The purpose of this paper is twofold. First, the definition of new statistical convergence with Fibonacci sequence is given and some fundamental properties of statistical convergence are examined. Second, we provide various approximation results concerning the classical Korovkin theorem via Fibonacci type statistical convergence.

متن کامل

Rough Ideal Convergence

In this paper we extend the notion of rough convergence using the concept of ideals which automatically extends the earlier notions of rough convergence and rough statistical convergence. We define the set of rough ideal limit points and prove several results associated with this set.

متن کامل

Khintchine-type Theorems on Manifolds: the Convergence Case for Standard

Notation. The main objects of this paper are n-tuples y = (y1, . . . , yn) of real numbers viewed as linear forms, i.e. as row vectors. In what follows, y will always mean a row vector, and we will be interested in values of a linear form given by y at integer points q = (q1, . . . , qn) T , the latter being a column vector. Thus yq will stand for y1q1 + · · ·+ ynqn. Hopefully it will cause no ...

متن کامل

Strong Convergence Theorems for Solutions of Equations of Hammerstein Type

Let H be a real Hilbert space. A mapping A : D(A) ⊆ H → H is said to be monotone if ⟨Ax − Ay, x − y⟩ ≥ 0 for every x, y ∈ D(A). A is called maximal monotone if it is monotone and the R(I + rA) = H, the range of (I + rA), for each r > 0, where I is the identity mapping on H. A is said to satisfy the range condition if cl(D(A)) ⊆ R(I + rA) for each r > 0. For monotone mappings, there are many rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2012

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1202397a